Biomarkers in Severe Asthma: The Importance of FeNO

A New Era for Personalized Medicine

Joe Zein, MD, PhD, MBA LPS 2023

Acknowledgement

• Eugene R. Bleecker, MD

No conflict of interest

Objectives

 Discuss the importance of understanding disease heterogeneity in the assessment of asthma

 Describe the value of predictive biomarkers of asthma endotypes and identifying their role in asthma subphenotypes

 Demonstrate the overall importance of FeNO in asthma pathobiology

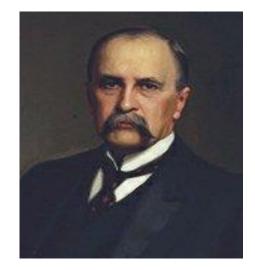
Definition and Prevalence of Severe Asthma

Severe Asthma: "asthma which requires treatment with guidelines medications such as high-dose ICS and LABA for the previous year or SCS to prevent it from becoming 'uncontrolled' or which remains 'uncontrolled' despite this therapy"

Poor asthma control (ACQ >1.5, ACT <20, or 'not well controlled' according to GINA)

At least 2 oral OCS-requiring exacerbations last year

Serious exacerbations: at least 1 hospitalization, ICU stay or mechanical ventilations in the past year


Persistent airflow limitation FEV₁ <80% predicted

Prevalence of severe asthma: 5%-10% of the total asthma population are often estimated' – Is this an underestimate?

ACO = Asthma Control Questionnaire ACT = asthma control Test FEV_1 = forced expiratory volume in 1 second GINA = Global Initiative for Asthma ICS = inhaled corticosteroid ICU = Intensive Care Unit LABA = long-acting β_2 agonist OCS = oral corticosteroid SCS = systemic corticosteroids Chung KF, et al. *Eur Respir J* 2014; 43:343-73

"If it were not for the great variability among individuals medicine might as well be a science and not an art."

Sir William Osler

Limitations of Guideline Classifications of Severe Asthma

Do not reflect asthma heterogeneity within and across severity levels

Assume all patients within a severity level always respond to the same therapy

Have created the paradigm that all asthma is always responsive to corticosteroids

Moore WC, et al. *Am J Respir Crit Care Med* 2010; 181:315-23 Jarjour NN, et al. *Am J Respir Crit Care Med* 2012; 185:356-62

The Approach to Treatment Is Changing



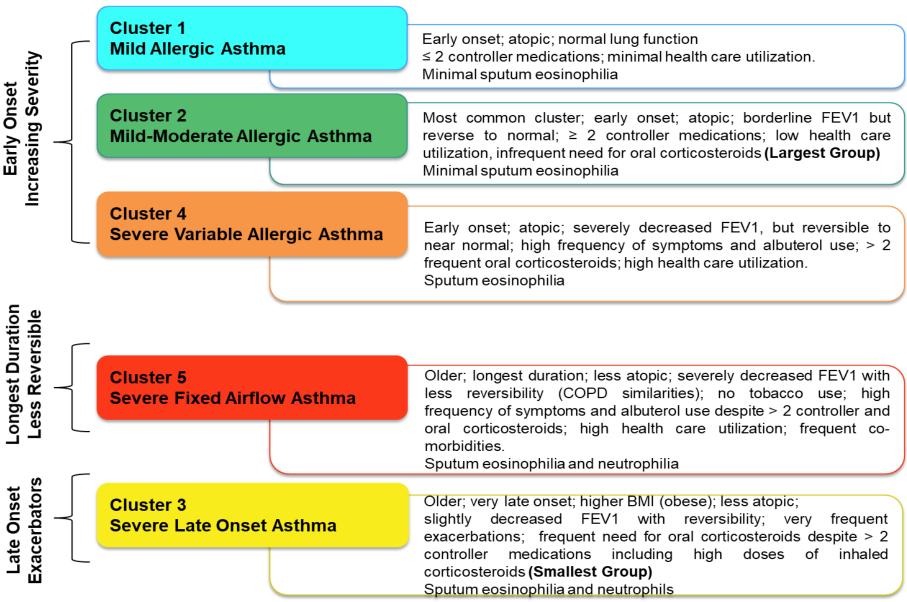
"In the future, the promise of safe and effective biomarkerdriven approaches with greater understanding of immunopathobiology of severe asthma" – Chung et al. 2014

Muraro A, et al. *J Allergy Clin Immunol* 2016; 137:1347-58 Chung KF, et al. *Eur Respir J* 2014; 43:343-73

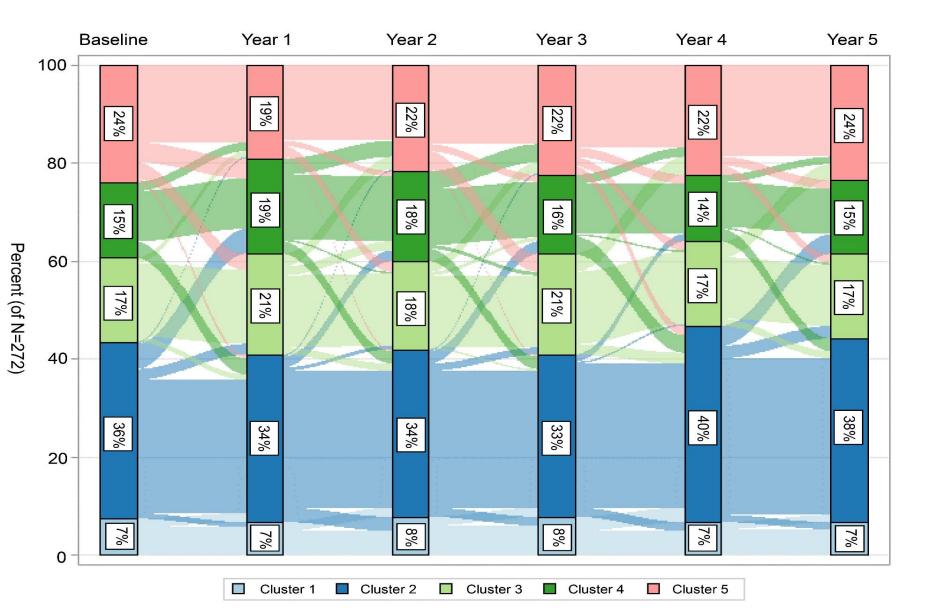
Potential Uses of Biomarkers in Asthma

• *Biomarker:* An objective characteristic that is an indicator of normal biology, pathogenic processes, or pharmacologic responses to a therapeutic intervention

Fricker M, et al. Respirology. 2017;22(3):430-442.


Approaches Classifying Asthma Heterogeneity and Severity

- "Hypothesis Driven Univariate Based": (Age of Onset, Allergic, Obesity, Ethnicity, Eosinophilic, Neutrophilic, Mast Cell, Exacerbations, etc)
- "Model Free" Multivariate: Unbiased Clusters
 Approaches (Systems Medicine)
 - Haldar P, et al. AJRCCM (2008)
 - Lefaudeux D, JACI (2017)


- SARP NHLBI : Moore WC, et al. *AJRCCM* (2010), *Ann Am Thorac Soc* (2013), *JACI* (2014)

Haldar P, et al. *Am J Respir Crit Care Med* 2008; 178:218-24. Moore WC, et al. *Am J Respir Crit Care Med* 2010; 181:315-23. Moore WC, et al. *Ann Am Thorac Soc* 2013; 10:S118-24. Moore WC, et al. *J Allergy Clin Immunol* 2014; 133:1557-63 e5

SARP Asthma Clinical Clusters

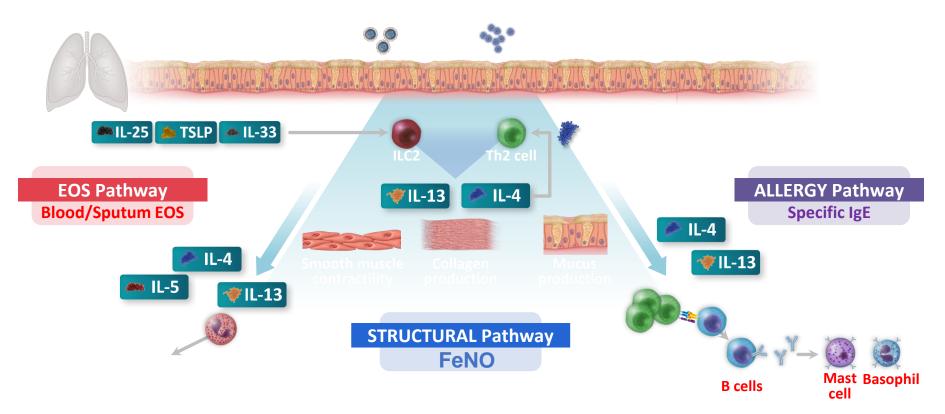
Longitudinal Stability of SARP Clinical Clusters Over 5 Years in the SARP 3 Cohort

Asthma, Heterogeneity and Severity

• Will each of these sub-phenotypes "respond" to a therapy that targets specific inflammatory mechanisms? Is severe asthma caused by nonadherence with prescribed corticosteroids?

What are the responses to systemic corticosteroids in severe asthma?

Phipatanakul W, et al. Am J Respir Crit Care Med 2017; 195:1439-48


Many Patients Remain Type 2 High After Intramuscular Triamcinolone (40 mg)

- Sputum eosinophils remain >2% in 27%
- Blood eosinophils >300 in 27%
- FeNO >25 ppb in 36%
 -of patients with severe asthma

Persistent T2 High Asthma had lower lung function, greater reversibility and more frequent exacerbations

Phipatanakul W, et al. Am J Respir Crit Care Med 2017; 195:1439-48. Peters MC, et al. J Allergy Clin Immunol 2018; 131:1169-79

Unique and Overlapping Biomarkers Reflect Inflammatory Pathways in Type 2 Asthma^{1,2}

EOS, eosinophils; FeNO, fractional exhaled nitric oxide; IgE, immunoglobulin E; IL, interleukin; ILC2, group 2 innate lymphoid cell; Th2, T helper 2; TSLP, thymic stromal lymphopoietin.

1. Gandhi NA, et al. *Nat Rev Drug Discov*. 2016;15(1):35-50. 2. Gandhi NA, et al. *Expert Rev Clin Immunol*. 2017;13(5):425-437.

Do Current Biomarkers Accurately Predict Asthma Severity Phenotypes?

- How well do serum IgE levels, blood eosinophil levels and FeNO relate to severity characteristics?
- What about other biomarkers: IL6 levels, Sputum eosinophil and neutrophil percent
- Data from ~ 700 patients with severe asthma from SARP 1-3 (NHLBI network 2000-Present)

SARP 1, 2, 3 Severe Asthma: IgE

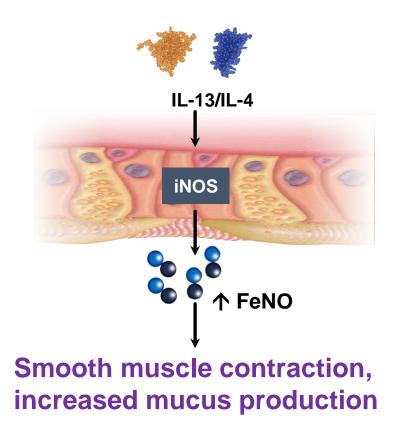
	lgE < 100 N=261	lgE ≥ 100 N=424	
Severe asthma and ≥ 12 years old			
	Mean ± std	Mean ± std	P-value
Age of Enroll	46 ± 14	40 ± 17	<0.0001
Age Asthma Onset	19 ± 17	14 ± 16	0.0009
Asthma Duration	28 ± 16	26 ± 16	0.1
BMI	32 ± 9	31 ± 9	0.11
IgE	38 <u>+</u> 29	632 <u>+</u> 934	<0.0001
Number + skin test	1.8 ± 2.4	4.8 ± 3.5	<0.0001
Baseline FEV ₁ %pred	66 ± 22	67 ± 2	0.87
Steroid Use	%	%	
High-Dose ICS	96	97	0.66
Other CS (oral or injected)	41	29	0.002
HCU in the Last Year from Asthma			
ER or urgent care	65	54	0.007
OCS bursts 3 or more	53	38	0.0003
ER Visit	49	37	0.002
Hospitalizations	28	22	0.1

Moore WC, et al. J Allergy Clin Immunol 2007; 119:405-13 Moore WC, et al. Ann Am Thorac Soc 2013; S118-24 Moore WC, et al. Am J Resp Crit Care Med 2010; 181:315-323 Teague WG, et al. J Allergy Clin Immunol 2017; 6:545-554

SARP 1, 2, 3 Severe Asthma: Blood Eos

	Blood Eos < 300 N=422	Blood Eos ≥ 300 N=311	
Severe asthma and			
≥ 12 years old	Mean ± std	Mean ± std	P-value
Age of Enroll	44 ± 15	42 ± 18	0.34
Age Asthma Onset	16 ± 15	16 ± 17	0.57
Asthma Duration	28 ± 16	25 ± 15	0.02
BMI	33 ± 9	29 ± 7	< 0.0001
Number + skin test	3.5 ± 3	4 ± 3	0.52
Blood EOS μl	133 ± 77	594 ± 805	< 0.0001
Baseline FEV₁ %pred	68 ± 22	64 ± 21	0.02
Steroid Use	%	%	
High-Dose ICS	96	97	0.84
Other CS (oral or injected)	37	31	0.1
HCU in the Last Year for Asthma			
ER or urgent care	60	57	0.4
OCS bursts 3 or more	46	45	0.82
ER Visits	44	42	0.55
Hospitalizations	26	24	0.73

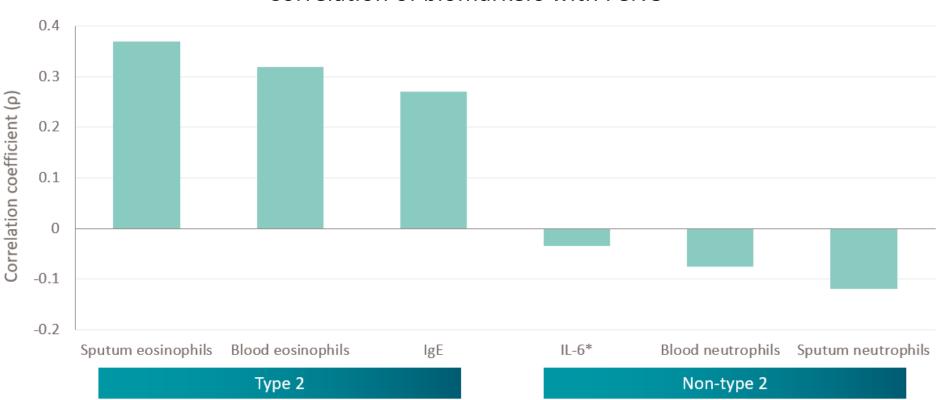
Moore WC, et al. J Allergy Clin Immunol 2007; 119:405-13 Moore WC, et al. Ann Am Thorac Soc 2013; S118-24 Moore WC, et al. Am J Resp Crit Care Med 2010; 181:315-323 Teague WG, et al. J Allergy Clin Immunol 2017; 6:545-554


SARP 1, 2, 3 Severe Asthma: FeNO

N=402	N=281	
Mean ± std	Mean ± std	P-value
44 ± 15	41 ± 17	0.06
15 ± 15	17 ± 17	0.69
29 ± 16	24 ± 15	0.0002
33 ± 9	29 ± 7	<0.0001
3.5 ± 3.3	3.7 ± 3.6	0.61
16 <u>+</u> 7	68 <u>+</u> 43	<0.0001
68 ± 21	65 ± 22	0.08
%	%	
97	97	1
28	38	0.004
54	67	0.0005
39	51	0.003
37	52	0.0002
19	31	0.0005
	44 ± 15 15 ± 15 29 ± 16 33 ± 9 3.5 ± 3.3 16 ± 7 68 ± 21 % 97 28 54 54 39 37	N=402N=281Mean \pm stdMean \pm std44 \pm 1541 \pm 1715 \pm 1517 \pm 1729 \pm 1624 \pm 1533 \pm 929 \pm 73.5 \pm 3.33.7 \pm 3.616 \pm 768 \pm 4368 \pm 2165 \pm 22%%97972838546739513752

Moore WC, et al. J Allergy Clin Immunol 2007; 119:405-13 Moore WC, et al. Ann Am Thorac Soc 2013; S118-24 Moore WC, et al. Am J Resp Crit Care Med 2010; 181:315-323 Teague WG, et al. J Allergy Clin Immunol 2017; 6:545-554

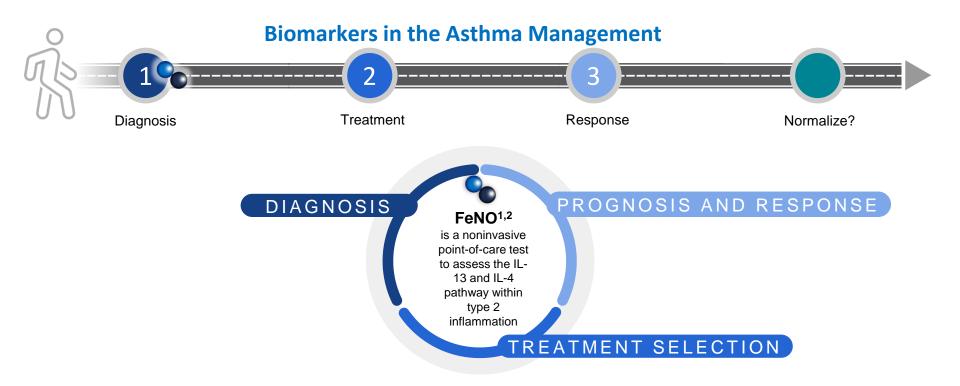
Elevated FeNO Levels Are Associated With Type 2 Inflammation


FeNO Production Is Driven by Activity of IL-4 and IL-13¹⁻³

FeNO, fractional exhaled nitric oxide; IL, interleukin; iNOS, inducible nitric oxide synthase.

1. Parulekar AD, et al. *Curr Opin Pulm Med.* 2016;22(1):59-68. 2. Prado CM, et al. *ISRN Allergy.* 2011;2011:832560. 3. Alving K, et al. *Eur Respir Mon.* 2010;49:1-31.

FeNO Positively Correlates With the Presence of Other Type 2 Biomarkers

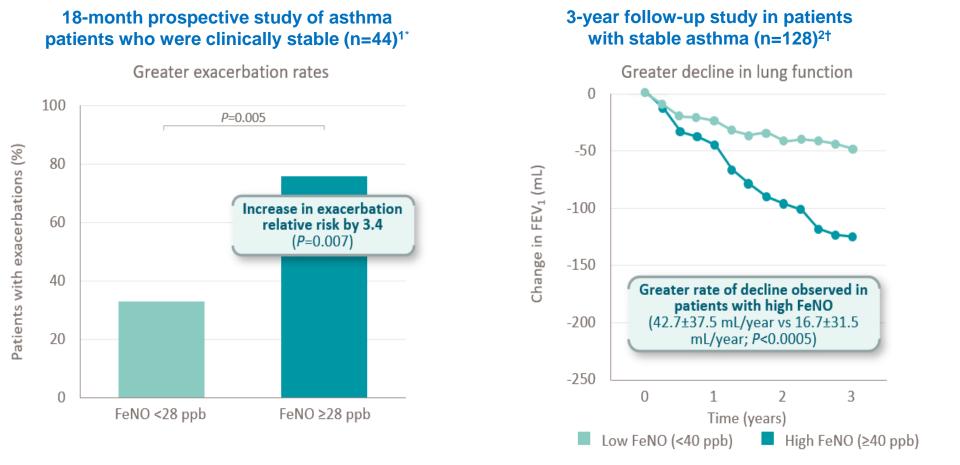


Correlation of biomarkers with FeNO*

*IL-6 levels were not significantly correlated with type 2 asthma biomarkers and thus should reflect non-type 2 asthma. FeNO, fractional exhaled nitric oxide; IgE, immunoglobulin E; IL, interleukin.

Li X, et al. JAllergy Clin Immunol. 2020;145(1):430-433.

FeNO Plays a Role in the Asthma Pathobiology



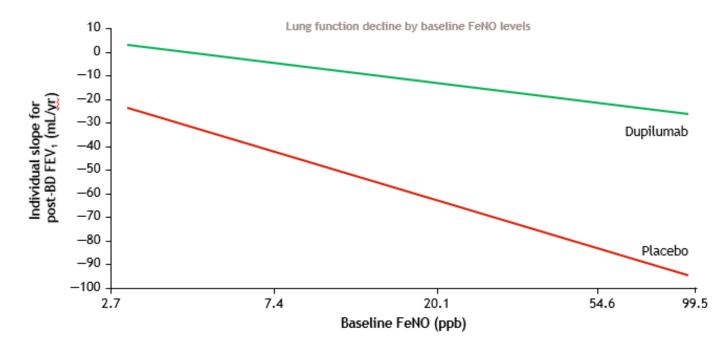
FeNO, fractional exhaled nitric oxide; IL, interleukin.

- 1. GINA. Global Strategy for Asthma Management and Prevention, 2022. Accessed May 3, 2022. https://ginasthma.org/reports/.
- 2. Kuo CR, et al. *Respir Med.* 2019;155:54-57.

Elevated FeNO Is Associated With Greater Disease Burden

Elevated FeNO Is a Predictor of Asthma Exacerbations and increased Lung Function Decline

*For 6 weeks prior to study start and receiving ICS+LABA (250 µg of fluticasone/50 µg of salmeterol or equivalent)¹

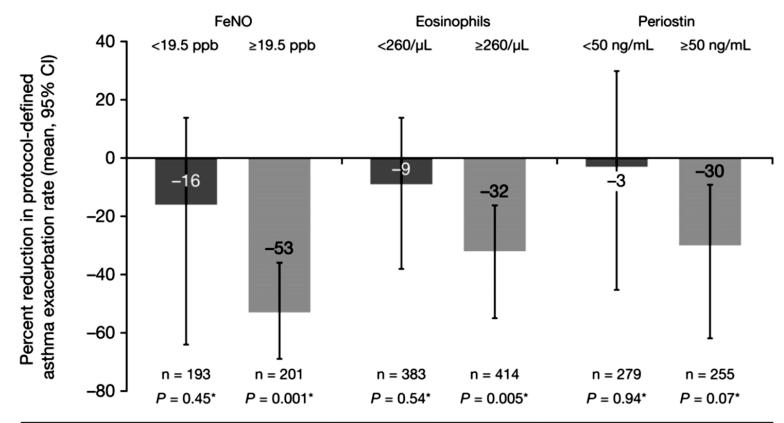

[†]Following treatment with ICS +/- LABA, leukotriene modifier, or theophylline for more than 4 years.²

1. Gelb AF, et al. *Chest*. 2006;129(6):1492-1499.

2. Matsunaga K, et al. *Allergol Int*. 2016;65(3):266-271.

Rate of Lung Function Decline Across FeNO Levels

· Lung function decline consistently increased in patients with higher baseline FeNO levels



Linear association between individual post-BD FEV₁ slope and baseline FeNO values.

FeNO as a Potential Prognostic and Predictive Marker of Lung Function Decline in Patients With Uncontrolled, Moderate-to-Severe Asthma:

LIBERTY ASTHMA QUEST; Ian D. Pavord et al, Presented at the 118th International Conference of the American Thoracic Society (ATS); San Francisco, CA, USA; May 13–18, 2022

Treatment effect of Omalizumab is greater in all three high baseline biomarker subgroups: Post-hoc analysis of the EXTRA Omalizumab study

	Exacerbation rates						
	Low FeNO at baseline	High FeNO at baseline	Low eosinophils at baseline	High eosinophils at baseline	Low periostin at baseline	High periostin at baseline	
Omalizumab	0.60	0.50	0.65	0.70	0.73	0.66	
Placebo	0.71	1.07	0.72	1.03	0.72	0.93	

Hanania NA. Am J Respir Crit Care Med. 2013 Apr 15;187(8):804-11.

E D I T O R I A L

New Biologics for Asthma

Jeffrey M. Drazen, M.D., and David Harrington, Ph.D.

- Four new biologics —mepolizumab, reslizumab, benralizumab, dupilumab and Tezepelumab directed vs. type 2 inflammation
- None of therapies have eliminated asthma exacerbations in all patients and normalized the physiological changes that are the core of asthma
- Some subjects are "asthma free" and some have no effect whatsoever
- "We need to go beyond blood eosinophil counts and nitric oxide. There are other biomarkers, yet to be discovered and validated, that will guide more effective treatment of severe asthma; let's commit to finding them."

Thank you! Questions and Comments?